Significance: Near-infrared fluorescence imaging still lacks a standardized, objective method to evaluate fluorescent dye efficacy in oncological surgical applications. This results in difficulties in translation between preclinical to clinical studies with fluorescent dyes and in the reproduction of results between studies, which in turn hampers further clinical translation of novel fluorescent dyes.
Aim: Our aim is to develop and evaluate a semi-automatic standardized method to objectively assess fluorescent signals in resected tissue.
Approach: A standardized imaging procedure was designed and quantitative analysis methods were developed to evaluate non-targeted and tumor-targeted fluorescent dyes. The developed analysis methods included manual selection of region of interest (ROI) on white light images, automated fluorescence signal ROI selection, and automatic quantitative image analysis. The proposed analysis method was then compared with a conventional analysis method, where fluorescence signal ROIs were manually selected on fluorescence images. Dice similarity coefficients and intraclass correlation coefficients were calculated to determine the inter- and intraobserver variabilities of the ROI selections and the determined signal- and tumor-to-background ratios.
Results: The proposed non-targeted fluorescent dyes analysis method showed statistically significantly improved variabilities after application on indocyanine green specimens. For specimens with the targeted dye SGM-101, the variability of the background ROI selection was statistically significantly improved by implementing the proposed method.
Conclusion: Semi-automatic methods for standardized quantitative analysis of fluorescence images were successfully developed and showed promising results to further improve the reproducibility and standardization of clinical studies evaluating fluorescent dyes.
Keywords: fluorescence-guided surgery; image analysis; image-guided surgery; quantitative fluorescence imaging; standardization.
© 2024 The Authors.