Current developments and opportunities of pluripotent stem cells-based therapies for salivary gland hypofunction

Front Cell Dev Biol. 2024 Jan 19:12:1346996. doi: 10.3389/fcell.2024.1346996. eCollection 2024.

Abstract

Salivary gland hypofunction (SGH) caused by systemic disease, drugs, aging, and radiotherapy for head and neck cancer can cause dry mouth, which increases the risk of disorders such as periodontitis, taste disorders, pain and burning sensations in the mouth, dental caries, and dramatically reduces the quality of life of patients. To date, the treatment of SGH is still aimed at relieving patients' clinical symptoms and improving their quality of life, and is not able to repair and regenerate the damaged salivary glands. Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and extended pluripotent stem cells (EPSCs), are an emerging source of cellular therapies that are capable of unlimited proliferation and differentiation into cells of all three germ layers. In recent years, the immunomodulatory and tissue regenerative effects of PSCs, their derived cells, and paracrine products of these cells have received increasing attention and have demonstrated promising therapeutic effects in some preclinical studies targeting SGH. This review outlined the etiologies and available treatments for SGH. The existing efficacy and potential role of PSCs, their derived cells and paracrine products of these cells for SGH are summarized, with a focus on PSC-derived salivary gland stem/progenitor cells (SGS/PCs) and PSC-derived mesenchymal stem cells (MSCs). In this Review, we provide a conceptual outline of our current understanding of PSCs-based therapy and its importance in SGH treatment, which may inform and serve the design of future studies.

Keywords: immunoregulation; induced pluripotent stem cells; pluripotent stem cells; regenerative therapy; salivary gland; salivary gland hypofunction.

Publication types

  • Review

Grants and funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This research was supported by the National Natural Science Foundation of China (82201084), China Postdoctoral Science Foundation (2022M722232), Beijing Postdoctoral Research Foundation (2023-ZZ-020), Miaopu Project of Beijing Tiantan Hospital, Capital Medical University (2023MP10), CACMS Innovation Fund (CI 2021A02802).