Effects of Benzo (a) Pyrene and 2,2',4,4'-Tetrabromodiphenyl Ether Exposure on the Thyroid Gland in Rats by Attenuated Total Reflection Fourier-Transform Infrared Spectroscopy

ACS Omega. 2024 Jan 19;9(4):4317-4323. doi: 10.1021/acsomega.3c05819. eCollection 2024 Jan 30.

Abstract

Benzo[a]pyrene (B[a]P) and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) are widespread environmental pollutants and can destroy thyroid function. We assessed the biochemical changes in the thyroid tissue of rats exposed to B[a]P and BDE-47 using attenuated total reflection Fourier-transform infrared spectroscopy combined with support vector machine(SVM). After B[a]P and BDE-47 treatment in rats, the structure of thyroid follicles was destroyed and epithelial cells were necrotic, indicating that B[a]P and BDE-47 may lead to changes of the thyroid morphology of the rats. These damages are mainly related to C=O stretch vibrations of lipids (1743 cm-1), as well as the secondary structure of proteins [amide I (1645 cm-1) and amide II (1550 cm-1)], and carbohydrates [C-OH (1138 cm-1), C-O (1106 cm-1, 1049 cm-1, 991 cm-1), C-C (1106 cm-1) stretching] and collagen (phosphodiester stretching at 922 cm-1) vibration modes. When SVM was used for classification, there was a substantial separation between the control and the exposure groups (accuracy = 96%; sensitivity = 98%; specificity = 87%), and there was also a major separation between the exposed groups (accuracy = 93%; sensitivity = 94%; and specificity = 92%).