Neuritogenesis is crucial for establishing proper neuronal connections during brain development; its failure causes neurodevelopmental defects. Cullin-RING E3 ubiquitin ligase complexes participate in various neurodevelopmental processes by regulating protein stability. We demonstrated the regulatory function of Cullin-RING E3 ubiquitin ligase 4 (CRL4) in neurite morphogenesis during early neurodevelopment. Cul4a and Cul4b, the core scaffold proteins of CRL4, exhibit high expression and activation within the cytosol of developing neurons, regulated by neuronal stimulation through N-methyl D-aspartate (NMDA) receptor signaling. CRL4 also interacts with cytoskeleton-regulating proteins involved in neurite morphogenesis. Notably, genetic depletion and inhibition of cytosolic CRL4 enhance neurite extension and branching in developing neurons. Conversely, Cul4a overexpression suppresses basal and NMDA-enhanced neuritogenesis. Furthermore, CRL4 and its substrate adaptor regulate the polyubiquitination and proteasomal degradation of doublecortin protein. Collectively, our findings suggest that CRL4 ensures proper neurite morphogenesis in developing neurons by regulating cytoskeleton-regulating proteins.
Keywords: Developmental biology; Molecular biology; Neuroscience.
© 2024 The Author(s).