Real-Time Artificial Intelligence-Based Optical Diagnosis of Neoplastic Polyps during Colonoscopy

NEJM Evid. 2022 Jun;1(6):EVIDoa2200003. doi: 10.1056/EVIDoa2200003. Epub 2022 Apr 13.

Abstract

BACKGROUND: Artificial intelligence using computer-aided diagnosis (CADx) in real time with images acquired during colonoscopy may help colonoscopists distinguish between neoplastic polyps requiring removal and nonneoplastic polyps not requiring removal. In this study, we tested whether CADx analyzed images helped in this decision-making process. METHODS: We performed a multicenter clinical study comparing a novel CADx-system that uses real-time ultra-magnifying polyp visualization during colonoscopy with standard visual inspection of small (≤5 mm in diameter) polyps in the sigmoid colon and the rectum for optical diagnosis of neoplastic histology. After committing to a diagnosis (i.e., neoplastic, uncertain, or nonneoplastic), all imaged polyps were removed. The primary end point was sensitivity for neoplastic polyps by CADx and visual inspection, compared with histopathology. Secondary end points were specificity and colonoscopist confidence level in unaided optical diagnosis. RESULTS: We assessed 1289 individuals for eligibility at colonoscopy centers in Norway, the United Kingdom, and Japan. We detected 892 eligible polyps in 518 patients and included them in analyses: 359 were neoplastic and 533 were nonneoplastic. Sensitivity for the diagnosis of neoplastic polyps with standard visual inspection was 88.4% (95% confidence interval [CI], 84.3 to 91.5) compared with 90.4% (95% CI, 86.8 to 93.1) with CADx (P=0.33). Specificity was 83.1% (95% CI, 79.2 to 86.4) with standard visual inspection and 85.9% (95% CI, 82.3 to 88.8) with CADx. The proportion of polyp assessment with high confidence was 74.2% (95% CI, 70.9 to 77.3) with standard visual inspection versus 92.6% (95% CI, 90.6 to 94.3) with CADx. CONCLUSIONS: Real-time polyp assessment with CADx did not significantly increase the diagnostic sensitivity of neoplastic polyps during a colonoscopy compared with optical evaluation without CADx. (Funded by the Research Council of Norway [Norges Forskningsråd], the Norwegian Cancer Society [Kreftforeningen], and the Japan Society for the Promotion of Science; UMIN number, UMIN000035213.)

Publication types

  • Multicenter Study

MeSH terms

  • Adult
  • Aged
  • Artificial Intelligence*
  • Colonic Neoplasms / diagnosis
  • Colonic Neoplasms / diagnostic imaging
  • Colonic Neoplasms / pathology
  • Colonic Polyps* / diagnosis
  • Colonic Polyps* / diagnostic imaging
  • Colonic Polyps* / pathology
  • Colonoscopy* / methods
  • Diagnosis, Computer-Assisted / methods
  • Female
  • Humans
  • Male
  • Middle Aged
  • Sensitivity and Specificity