Molybdenum(0)-Tricarbonyl Complex Supported by an Azacalix-pyridine Ligand: Synthesis, Characterization, Surface Deposition and Conversion to a Molybdenum(VI)-Trioxo Complex with O2

Chemistry. 2024 Apr 25;30(24):e202303912. doi: 10.1002/chem.202303912. Epub 2024 Feb 27.

Abstract

Adsorption of metal-organic complexes on metallic surfaces to produce well-defined single site catalysts is a novel approach combining the advantages of homogeneous and heterogeneous catalysis. To avoid the "surface trans-effect" a dome-shaped molybdenum(0) tricarbonyl complex supported by an tolylazacalix[3](2,6)pyridine ligand is synthesized. This vacuum-evaporable complex both activates CO and reacts with molecular oxygen (O2) to form a Mo(VI) trioxo complex which in turn is capable of catalytically mediating oxygen transfer. The molybdenum tricarbonyl- and trioxo complexes are investigated in the solid state, in homogeneous solution and on noble metal surfaces (Cu, Au) employing a range of spectroscopic and analytical methods.

Keywords: O−O activation; carbonyl ligands; catalysis; molybdenum; surface chemistry.