Many superconducting systems with broken time-reversal and inversion symmetry show a superconducting diode effect, a non-reciprocal phenomenon analogous to semiconducting p-n-junction diodes. While the superconducting diode effect lays the foundation for realizing ultralow dissipative circuits, Josephson-phenomena-based diode effect (JDE) can enable the realization of protected qubits. The superconducting diode effect and JDE reported thus far are at low temperatures (~4 K), limiting their applications. Here we demonstrate JDE persisting up to 77 K using an artificial Josephson junction of twisted layers of Bi2Sr2CaCu2O8+δ. JDE manifests as an asymmetry in the magnitude and distributions of switching currents, attaining the maximum at 45° twist. The asymmetry is induced by and tunable with a very small magnetic field applied perpendicular to the junction and arises due to interaction between Josephson and Abrikosov vortices. We report a large asymmetry of 60% at 20 K. Our results provide a path towards realizing superconducting Josephson circuits at liquid-nitrogen temperature.
© 2024. The Author(s), under exclusive licence to Springer Nature Limited.