Previously, we demonstrated that palmatine (PALM) - an isoquinoline alkaloid from Berberis sibrica radix, exerted antiseizure activity in the pentylenetetrazole (PTZ)-induced seizure assay in larval zebrafish. The aim of the present study was to more precisely characterize PALM as a potential anticonvulsant drug candidate. A range of zebrafish and mouse seizure/epilepsy models were applied in the investigation. Immunostaining analysis was conducted to assess the changes in mouse brains, while in silico molecular modelling was performed to determine potential targets for PALM. Accordingly, PALM had anticonvulsant effect in ethyl 2-ketopent-4-enoate (EKP)-induced seizure assay in zebrafish larvae as well as in the 6 Hz-induced psychomotor seizure threshold and timed infusion PTZ tests in mice. The protective effect in the EKP-induced seizure assay was confirmed in the local field potential recordings. PALM did not affect seizures in the gabra1a knockout line of zebrafish larvae. In the scn1Lab-/- zebrafish line, pretreatment with PALM potentiated seizure-like behaviour of larvae. Repetitive treatment with PALM, however, did not reduce development of PTZ-induced seizure activity nor prevent the loss of parvalbumin-interneurons in the hippocampus of the PTZ kindled mice. In silico molecular modelling revealed that the noted anticonvulsant effect of PALM in EKP-induced seizure assay might result from its interactions with glutamic acid decarboxylase and/or via AMPA receptor non-competitive antagonism. Our study has demonstrated the anticonvulsant activity of PALM in some experimental models of seizures, including a model of pharmacoresistant seizures induced by EKP. These results indicate that PALM might be a suitable new drug candidate but the precise mechanism of its anticonvulsant activity has to be determined.
Keywords: Mice; Molecular docking; Palmatine; Parvalbumin-immunoreactive neurons; Seizure/epilepsy models; Zebrafish.
Copyright © 2024 The Authors. Published by Elsevier Masson SAS.. All rights reserved.