Diagnostic Accuracy of Computer-Aided Detection During Active Case Finding for Pulmonary Tuberculosis in Africa: A Systematic Review and Meta-analysis

Open Forum Infect Dis. 2024 Jan 17;11(2):ofae020. doi: 10.1093/ofid/ofae020. eCollection 2024 Feb.

Abstract

Background: Computer-aided detection (CAD) may be a useful screening tool for tuberculosis (TB). However, there are limited data about its utility in active case finding (ACF) in a community-based setting, and particularly in an HIV-endemic setting where performance may be compromised.

Methods: We performed a systematic review and evaluated articles published between January 2012 and February 2023 that included CAD as a screening tool to detect pulmonary TB against a microbiological reference standard (sputum culture and/or nucleic acid amplification test [NAAT]). We collected and summarized data on study characteristics and diagnostic accuracy measures. Two reviewers independently extracted data and assessed methodological quality against Quality Assessment of Diagnostic Accuracy Studies-2 criteria. Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Diagnostic Test Accuracy Studies (PRISMA-DTA) guidelines were followed.

Results: Of 1748 articles reviewed, 5 met with the eligibility criteria and were included in this review. A meta-analysis revealed pooled sensitivity of 0.87 (95% CI, 0.78-0.96) and specificity of 0.74 (95% CI, 0.55-0.93), just below the World Health Organization (WHO)-recommended target product profile (TPP) for a screening test (sensitivity ≥0.90 and specificity ≥0.70). We found a high risk of bias and applicability concerns across all studies. Subgroup analyses, including the impact of HIV and previous TB, were not possible due to the nature of the reporting within the included studies.

Conclusions: This review provides evidence, specifically in the context of ACF, for CAD as a potentially useful and cost-effective screening tool for TB in a resource-poor HIV-endemic African setting. However, given methodological concerns, caution is required with regards to applicability and generalizability.

Keywords: Africa; active case finding; computer-aided detection; diagnostic accuracy; tuberculosis.