Evaluation of Spectral X-Ray Imaging for Panoramic Dental Images Based on a Simulation Framework

J Imaging Inform Med. 2024 Apr;37(2):892-898. doi: 10.1007/s10278-023-00940-8. Epub 2024 Jan 12.

Abstract

Modern photon counting detectors allow the calculation of virtual monoenergetic or material decomposed X-ray images but are not yet used for dental panoramic radiography systems. To assess the diagnostic potential and image quality of photon counting detectors in dental panoramic radiography, ethics approval from the local ethics committee was obtained for this retrospective study. Conventional CT scans of the head and neck region were segmented into bone and soft tissue. The resulting datasets were used to calculate panoramic equivalent thickness bone and soft tissue images by forward projection, using a geometry like that of conventional panoramic radiographic systems. The panoramic equivalent thickness images were utilized to generate synthetic conventional panoramic radiographs and panoramic virtual monoenergetic radiographs at various energies. The conventional, two virtual monoenergetic images at 40 keV and 60 keV, and material-separated bone and soft tissue panoramic equivalent thickness X-ray images simulated from 17 head CTs were evaluated in a reader study involving three experienced radiologists regarding their diagnostic value and image quality. Compared to conventional panoramic radiographs, the material-separated bone panoramic equivalent thickness image exhibits a higher image quality and diagnostic value in assessing the bone structure p < . 001 and details such as teeth or root canals p < . 001 . Panoramic virtual monoenergetic radiographs do not show a significant advantage over conventional panoramic radiographs. The conducted reader study shows the potential of spectral X-ray imaging for dental panoramic imaging to improve the diagnostic value and image quality.

Keywords: Dental digital radiography; Material decomposition; Panoramic radiography; Photon counting detectors; Spectral imaging.