High-Safety Electrolytes with an Anion-Rich Solvation Structure Tuned by Difluorinated Cations for High-Voltage Lithium Metal Batteries

Adv Mater. 2024 Jun;36(23):e2400177. doi: 10.1002/adma.202400177. Epub 2024 Feb 19.

Abstract

As next-generation energy storage devices, lithium metal batteries (LMBs) must offer high safety, high-voltage resistance, and a long life span. Electrolyte engineering is a facile strategy to tailor the interfacial chemistry of LMBs. In particular, the solvation structure and derived solid electrolyte interphase (SEI) are crucial for a satisfactory battery performance. Herein, a novel middle-concentrated ionic liquid electrolyte (MCILE) with an anion-rich solvation structure tuned by difluorinated cations is demonstrated to achieve ultrahigh safety, high-voltage stability, and excellent ternary-cathode compatibility. Novel gem-difluorinated cations first synthesized for prestoring fluorine on positively charged species, not only preferentially adsorb in the inner-Helmholtz layers, but also participate in regulating the Li+ solvation structure, resulting in a robust interphase. Moreover, these weak interactions in the Li+ solvation structure including anion-solvent and ionic liquid (IL) cation-solvent pairs are first revealed, which are beneficial for promoting an anion-dominated solvation structure and the desolvation process. Benefiting from the unique anion-rich solvation structure, a stable hetero-SEI structure is obtained. The designed MCILE exhibits compatibility with Li metal anode and the high-voltage ternary cathode at high temperatures (60 °C). This work provides a new approach for regulating the solvation structure and electrode interphase chemistry of LMBs via difluorinated IL cations.

Keywords: gem‐difluorinated cations; ionic liquid electrolyte; lithium metal batteries; solvation structure; ultrahigh safety.