Sleep Duration Polygenic Risk and Phenotype: Associations with Biomarkers of Accelerated Aging in the Baltimore Longitudinal Study of Aging

Int J Aging Hum Dev. 2024 Feb 12:914150241231192. doi: 10.1177/00914150241231192. Online ahead of print.

Abstract

We sought to explore whether genetic risk for, and self-reported, short sleep are associated with biological aging and whether age and sex moderate these associations. Participants were a subset of individuals from the Baltimore Longitudinal Study of Aging who had complete data on self-reported sleep (n = 567) or genotype (n = 367). Outcomes included: Intrinsic Horvath age, Hannum age, PhenoAge, GrimAge, and DNAm-based estimates of plasminogen activator inhibitor-1 (PAI-1) and granulocyte count. Results demonstrated that polygenic risk for short sleep was positively associated with granulocyte count; compared to those reporting <6 hr sleep, those reporting >7 hr demonstrated faster PhenoAge and GrimAge acceleration and higher estimated PAI-1. Polygenic risk for short sleep and self-reported sleep duration interacted with age and sex in their associations with some of the outcomes. Findings highlight that polygenic risk for short sleep and self-reported long sleep is associated with variation in the epigenetic landscape and subsequently aging.

Keywords: age acceleration; aging; biomarkers; epigenetics; polygenic risk; sleep duration.