Calibration improvements expand filterscope diagnostic use

Rev Sci Instrum. 2024 Feb 1;95(2):023504. doi: 10.1063/5.0175421.

Abstract

The filterscope diagnostic on DIII-D utilizes photomultiplier tubes to measure visible light emission from the plasma. The system has undergone a substantial upgrade since previous attempts to cross-calibrate the filterscope with other spectroscopic diagnostics were unsuccessful. The optics now utilize a dichroic mirror to initially split the light at nearly 99% transmission or reflectance for light below or above 550 nm. This allows the system to measure Dα emission without degrading visible light emission from the plasma for wavelengths below 550 nm (to measure Dβ, Dγ, W-I, C-III, etc.). Additional optimization of the optical components and calibration techniques reduce the error in the signal up to 10% in some channels compared to previous methods. Cross-calibration measurements with two other high resolution spectroscopic diagnostics now show excellent agreement for the first time. This expands the capabilities of the filterscope system allowing measurement of divertor detachment, emission profiles, edge-localized mode behavior, and plasma-wall interactions. It also enables direct comparisons against calculations from boundary plasma simulations. These were not possible before.