Reports of fading vole and lemming population cycles and persisting low populations in some parts of the Arctic have raised concerns about the spread of these fundamental changes to tundra food web dynamics. By compiling 24 unique time series of lemming population fluctuations across the circumpolar region, we show that virtually all populations displayed alternating periods of cyclic/non-cyclic fluctuations over the past four decades. Cyclic patterns were detected 55% of the time (n = 649 years pooled across sites) with a median periodicity of 3.7 years, and non-cyclic periods were not more frequent in recent years. Overall, there was an indication for a negative effect of warm spells occurring during the snow onset period of the preceding year on lemming abundance. However, winter duration or early winter climatic conditions did not differ on average between cyclic and non-cyclic periods. Analysis of the time series shows that there is presently no Arctic-wide collapse of lemming cycles, even though cycles have been sporadic at most sites during the last decades. Although non-stationary dynamics appears a common feature of lemming populations also in the past, continued warming in early winter may decrease the frequency of periodic irruptions with negative consequences for tundra ecosystems.
Keywords: Arctic tundra; climate warming; melt–freeze events; population dynamics; small mammals; transient dynamics.