Exercise mitigates flow recirculation and activates metabolic transducer SCD1 to catalyze vascular protective metabolites

Sci Adv. 2024 Feb 16;10(7):eadj7481. doi: 10.1126/sciadv.adj7481. Epub 2024 Feb 14.

Abstract

Exercise promotes pulsatile shear stress in the arterial circulation and ameliorates cardiometabolic diseases. However, exercise-mediated metabolic transducers for vascular protection remain under-investigated. Untargeted metabolomic analysis demonstrated that wild-type mice undergoing voluntary wheel running exercise expressed increased endothelial stearoyl-CoA desaturase 1 (SCD1) that catalyzes anti-inflammatory lipid metabolites, namely, oleic (OA) and palmitoleic acids (PA), to mitigate NF-κB-mediated inflammatory responses. In silico analysis revealed that exercise augmented time-averaged wall shear stress but mitigated flow recirculation and oscillatory shear index in the lesser curvature of the mouse aortic arch. Following exercise, endothelial Scd1-deleted mice (Ldlr-/- Scd1EC-/-) on high-fat diet developed persistent VCAM1-positive endothelium in the lesser curvature and the descending aorta, whereas SCD1 overexpression via adenovirus transfection mitigated endoplasmic reticulum stress and inflammatory biomarkers. Single-cell transcriptomics of the aorta identified Scd1-positive and Vcam1-negative endothelial subclusters interacting with other candidate genes. Thus, exercise mitigates flow recirculation and activates endothelial SCD1 to catalyze OA and PA for vascular endothelial protection.

MeSH terms

  • Animals
  • Aorta* / metabolism
  • Diet, High-Fat
  • Endothelium, Vascular / metabolism
  • Mice
  • Motor Activity*
  • Stearoyl-CoA Desaturase / genetics
  • Stearoyl-CoA Desaturase / metabolism

Substances

  • Stearoyl-CoA Desaturase
  • Scd1 protein, mouse