Background: Machine learning (ML) models have been proposed to predict risk related to transvenous lead extraction (TLE).
Objective: The purpose of this study was to test whether integrating imaging data into an existing ML model increases its ability to predict major adverse events (MAEs; procedure-related major complications and procedure-related deaths) and lengthy procedures (≥100 minutes).
Methods: We hypothesized certain features-(1) lead angulation, (2) coil percentage inside the superior vena cava (SVC), and (3) number of overlapping leads in the SVC-detected from a pre-TLE plain anteroposterior chest radiograph (CXR) would improve prediction of MAE and long procedural times. A deep-learning convolutional neural network was developed to automatically detect these CXR features.
Results: A total of 1050 cases were included, with 24 MAEs (2.3%) . The neural network was able to detect (1) heart border with 100% accuracy; (2) coils with 98% accuracy; and (3) acute angle in the right ventricle and SVC with 91% and 70% accuracy, respectively. The following features significantly improved MAE prediction: (1) ≥50% coil within the SVC; (2) ≥2 overlapping leads in the SVC; and (3) acute lead angulation. Balanced accuracy (0.74-0.87), sensitivity (68%-83%), specificity (72%-91%), and area under the curve (AUC) (0.767-0.962) all improved with imaging biomarkers. Prediction of lengthy procedures also improved: balanced accuracy (0.76-0.86), sensitivity (75%-85%), specificity (63%-87%), and AUC (0.684-0.913).
Conclusion: Risk prediction tools integrating imaging biomarkers significantly increases the ability of ML models to predict risk of MAE and long procedural time related to TLE.
Keywords: Artificial intelligence; Complications; Computer vision; Machine Learning; Risk prediction; Transvenous lead extraction.
Copyright © 2024 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.