Objectives: Total-body PET/CT scanners with long axial fields of view have enabled unprecedented image quality and quantitative accuracy. However, the ionizing radiation from CT is a major issue in PET imaging, which is more evident with reduced radiopharmaceutical doses in total-body PET/CT. Therefore, we attempted to generate CT-free attenuation-corrected (CTF-AC) total-body PET images through deep learning.
Methods: Based on total-body PET data from 122 subjects (29 females and 93 males), a well-established cycle-consistent generative adversarial network (Cycle-GAN) was employed to generate CTF-AC total-body PET images directly while introducing site structures as prior information. Statistical analyses, including Pearson correlation coefficient (PCC) and t-tests, were utilized for the correlation measurements.
Results: The generated CTF-AC total-body PET images closely resembled real AC PET images, showing reduced noise and good contrast in different tissue structures. The obtained peak signal-to-noise ratio and structural similarity index measure values were 36.92 ± 5.49 dB (p < 0.01) and 0.980 ± 0.041 (p < 0.01), respectively. Furthermore, the standardized uptake value (SUV) distribution was consistent with that of real AC PET images.
Conclusion: Our approach could directly generate CTF-AC total-body PET images, greatly reducing the radiation risk to patients from redundant anatomical examinations. Moreover, the model was validated based on a multidose-level NAC-AC PET dataset, demonstrating the potential of our method for low-dose PET attenuation correction. In future work, we will attempt to validate the proposed method with total-body PET/CT systems in more clinical practices.
Clinical relevance statement: The ionizing radiation from CT is a major issue in PET imaging, which is more evident with reduced radiopharmaceutical doses in total-body PET/CT. Our CT-free PET attenuation correction method would be beneficial for a wide range of patient populations, especially for pediatric examinations and patients who need multiple scans or who require long-term follow-up.
Key points: • CT is the main source of radiation in PET/CT imaging, especially for total-body PET/CT devices, and reduced radiopharmaceutical doses make the radiation burden from CT more obvious. • The CT-free PET attenuation correction method would be beneficial for patients who need multiple scans or long-term follow-up by reducing additional radiation from redundant anatomical examinations. • The proposed method could directly generate CT-free attenuation-corrected (CTF-AC) total-body PET images, which is beneficial for PET/MRI or PET-only devices lacking CT image poses.
Keywords: Deep learning; Positron emission tomography; Radiation.
© 2024. The Author(s), under exclusive licence to European Society of Radiology.