To evaluate the utility of preserved fishes for reconstructing historical and spatial patterns of mercury (Hg) exposure, we experimentally tested the stability of Hg concentrations and Hg stable isotope ratios under standard museum practices of specimen preservation. We found that loss of unidentified constituents during preservation increased Hg concentrations in fish muscle. Low-Hg fish reared in the laboratory were susceptible to exogenous contamination with inorganic mercury (iHg) when preservative fluids were intentionally spiked or iHg leached passively from contaminated wild fishes in the same container. This contamination impacted Hg isotope values of total Hg, but the conservative nature of methylmercury allows us to quantitatively correct for iHg contamination. Our findings validate the potential to use fishes from the world's museums to generate spatiotemporal baselines for the Minamata Convention on Mercury, but we recommend a set of precautions to maximize inference strength. Selecting the largest specimens of a target species helps dilute any iHg contamination. Specimens should be drawn from lots that were not comingled with fishes from other collections to minimize risk of iHg transfer among fish with different contamination histories. Finally, focusing on low-lipid species will enhance the comparability of Hg concentrations between historical and contemporary collections.
Keywords: Minamata convention; isotopes; mercury; museums; preserved fish.