Multiple signaling pathways have been discovered to play a role in aging and longevity, including the insulin/IGF-1 signaling system, AMPK pathway, TOR signaling, JNK pathway, and germline signaling. Mammalian serum and glucocorticoid-inducible kinase 1 (sgk-1), which has been associated with various disorders including hypertension, obesity, and tumor growth, limits survival in C. elegans by reducing DAF-16/FoxO activity while suppressing FoxO3 activity in human cell culture. C. elegans provides significant protection for a number of genes associated with human cancer. The best known of these are the lin-35/pRb (mammalian ortholog pRb) and CEP-1 (mammalian ortholog p53) genes. Therefore, in this study, we aimed to investigate the expression analyzes of sgk-1, which is overexpressed in many types of mammalian cancer, in mutant lin-35 and to demonstrate the validation of reference genes in wild-type N2 and mutant lin-35 for C. elegans-focused cancer research. To develop functional genomic studies in C. elegans, we evaluated the expression stability of five candidate reference genes (act-1, ama-1, cdc-42, pmp-3, iscu-1) by quantitative real-time PCR using five algorithms (geNorm, NormFinder, Delta Ct method, BestKeeper, RefFinder) in N2 and lin-35 worms. According to our findings, act-1 and cdc-42 were effective in accurately normalizing the levels of gene expression in N2 and lin-35. act-1 and cdc-42 also displayed the most consistent expression patterns, therefore they were utilized to standardize expression level of sgk-1. Furthermore, our results clearly showed that sgk-1 was upregulated in lin-35 worms compared to N2 worms. Our results highlight the importance of definitive validation using mostly expressed reference genes.
Keywords: C. elegans; RT-qPCR; cancer; lin-35; normalization; sgk-1.