Multiplexed Functional Assessments of MYH7 Variants in Human Cardiomyocytes

Circ Genom Precis Med. 2024 Apr;17(2):e004377. doi: 10.1161/CIRCGEN.123.004377. Epub 2024 Feb 16.

Abstract

Background: Pathogenic autosomal-dominant missense variants in MYH7 (myosin heavy chain 7), which encodes the sarcomeric protein (β-MHC [beta myosin heavy chain]) expressed in cardiac and skeletal myocytes, are a leading cause of hypertrophic cardiomyopathy and are clinically actionable. However, ≈75% of MYH7 missense variants are of unknown significance. While human-induced pluripotent stem cells (hiPSCs) can be differentiated into cardiomyocytes to enable the interrogation of MYH7 variant effect in a disease-relevant context, deep mutational scanning has not been executed using diploid hiPSC derivates due to low hiPSC gene-editing efficiency. Moreover, multiplexable phenotypes enabling deep mutational scanning of MYH7 variant hiPSC-derived cardiomyocytes are unknown.

Methods: To overcome these obstacles, we used CRISPRa On-Target Editing Retrieval enrichment to generate an hiPSC library containing 113 MYH7 codon variants suitable for deep mutational scanning. We first established that β-MHC protein loss occurs in a hypertrophic cardiomyopathy human heart with a pathogenic MYH7 variant. We then differentiated the MYH7 missense variant hiPSC library to cardiomyocytes for multiplexed assessment of β-MHC variant abundance by massively parallel sequencing and hiPSC-derived cardiomyocyte survival.

Results: Both the multiplexed assessment of β-MHC abundance and hiPSC-derived cardiomyocyte survival accurately segregated all known pathogenic variants from synonymous variants. Functional data were generated for 4 variants of unknown significance and 58 additional MYH7 missense variants not yet detected in patients.

Conclusions: This study leveraged hiPSC differentiation into disease-relevant cardiomyocytes to enable multiplexed assessments of MYH7 missense variants for the first time. Phenotyping strategies used here enable the application of deep mutational scanning to clinically actionable genes, which should reduce the burden of variants of unknown significance on patients and clinicians.

Keywords: cardiomyopathy, hypertrophic; deep mutational scanning; induced pluripotent stem cells; myosin heavy chain 7.

MeSH terms

  • Cardiac Myosins / genetics
  • Cardiomyopathy, Hypertrophic* / genetics
  • Cardiomyopathy, Hypertrophic* / metabolism
  • Cell Differentiation / genetics
  • Humans
  • Induced Pluripotent Stem Cells* / metabolism
  • Myocytes, Cardiac / metabolism
  • Myosin Heavy Chains / genetics

Substances

  • Myosin Heavy Chains
  • MYH7 protein, human
  • Cardiac Myosins