Capturing the Binuclear Copper State of Peptidylglycine Monooxygenase Using a Peptidyl-Homocysteine Lure

J Am Chem Soc. 2024 Feb 28;146(8):5074-5080. doi: 10.1021/jacs.3c14705. Epub 2024 Feb 16.

Abstract

Peptidylglycine monooxygenase is a copper-dependent enzyme that catalyzes C-alpha hydroxylation of glycine extended pro-peptides, a critical post-translational step in peptide hormone processing. The canonical mechanism posits that dioxygen binds at the mononuclear M-center to generate a Cu(II)-superoxo species capable of H atom abstraction from the peptidyl substrate, followed by long-range electron tunneling from the CuH center. Recent crystallographic and biochemical data have challenged this mechanism, suggesting instead that an "open-to-closed" transition brings the copper centers closer, allowing reactivity within a binuclear intermediate. Here we present the first direct observation of an enzyme-bound binuclear copper species, captured by the use of an Ala-Ala-Phe-hCys inhibitor complex. This molecule reacts with the fully reduced enzyme to form a thiolate-bridged binuclear species characterized by EXAFS of the WT and its M314H variant and with the oxidized enzyme to form a novel mixed valence entity characterized by UV/vis and EPR. Mechanistic implications are discussed.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Copper* / chemistry
  • Mixed Function Oxygenases* / chemistry
  • Multienzyme Complexes / chemistry
  • Oxygen / chemistry

Substances

  • peptidylglycine monooxygenase
  • Copper
  • Mixed Function Oxygenases
  • Multienzyme Complexes
  • Oxygen