We present the first direct experimental measurement of defect-induced lifetime shortening of acoustic surface phonons. Defects are found to contribute a temperature-independent component to the linewidths of Rayleigh wave phonons on a Ni(111) surface. We also characterized the increase in phonon scattering with both surface defect density and phonon wave vector. A quantitative estimate of the scattering rate between phonon modes and surface line defects is extracted from the experimental data for the first time.