Objective: One proposed mechanism of disease progression in Parkinson's disease includes the interplay of endogenous dopamine toxicity and mitochondrial dysfunction. However, the in-vivo effects of exogenous dopamine administration on cerebral bioenergetics are unknown.
Methods: We performed a double-blinded, cross-over, placebo-controlled trial. Participants received either 200/50 mg levodopa/benserazide or a placebo and vice versa on the second study visit. Clinical assessments and multimodal neuroimaging were performed, including 31phosphorus magnetic resonance spectroscopy of the basal ganglia and the midbrain.
Results: In total, 20 (6 female) patients with Parkinson's disease and 22 sex- and age-matched healthy controls (10 female) were enrolled. Treatment with levodopa/benserazide but not with placebo resulted in a substantial reduction of high-energy phosphorus-containing metabolites in the basal ganglia (patients with Parkinson's disease: -40%; healthy controls: -39%) but not in the midbrain. There were no differences in high-energy phosphorus-containing metabolites for patients with Parkinson's disease compared to healthy controls in the OFF state and treatment response.
Interpretation: Exogenously administered levodopa/benserazide strongly interferes with basal ganglia high-energy phosphorus-containing metabolite levels in both groups. The lack of effects on midbrain levels suggests that the observed changes are limited to the site of dopamine action. ANN NEUROL 2024;95:849-857.
© 2024 The Authors. Annals of Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.