Tilapia-soybean protein co-precipitates: Focus on physicochemical properties, nutritional quality, and proteomics profile

Food Chem X. 2024 Feb 5:21:101179. doi: 10.1016/j.fochx.2024.101179. eCollection 2024 Mar 30.

Abstract

The development of binary protein systems featuring superior nutritional properties and applied range is an interesting and challenging task in the food industry. In this study, the tilapia-soybean protein co-precipitates (TSPCs) with different mass ratios of tilapia meat and soybean meal were constructed. Results of physicochemical properties showed that the highest solubility and thermal stability values of TSPCs were 81.90 % and 90.30 °C, respectively. TSPCs have the full complement of amino acids and enhanced nutritional quality compared to tilapia protein isolate (TPI) and soybean protein isolate (SPI). TSPC2:1 and TSPC1:1 contained the highest levels of tryptophan, aspartic acid, glycine, histidine, and arginine relative to TPI and SPI. The in vitro protein digestibility and protein digestibility corrected amino acid scores of TSPCs were also higher than that of SPI. SDS-PAGE revealed that TSPCs contained protein subunits from TPI and SPI. Moreover, the lysine-to-arginine ratio and β subunit were greatly correlated with protein digestibility with correlation coefficients of -0.962 (P < 0.01) and -0.971 (P < 0.01), respectively. Compared to SPI, TSPCs displayed a lower lysine-to-arginine ratio and β-conglycinin content, which improved its digestibility. Proteomic analysis indicated that TSPC1:1 had 989 unique proteins, which gives TSPCs enhanced biological properties compared to TPI and SPI, allowing them to participate in a broad range of biochemical metabolic and signal transduction pathways. The study would advance the utilization of mixed proteins toward exceptional food industry applications.

Keywords: Nutritional quality; Physicochemical properties; Protein co-precipitates; Proteomic analysis; Soybean protein; Tilapia protein.