Background: The current literature lacks recommendations regarding surgical approaches to best visualize and reduce Hoffa fractures. The aims of this study were to (1) define surgical corridors to the posterior portions of the lateral and medial femoral condyles and (2) compare the articular surface areas visible with different approaches.
Methods: Eight fresh-frozen human cadaveric knees (6 male and 2 female donors; mean age, 68.2 ± 10.2 years) underwent dissection simulating 6 surgical approaches to the distal femur. The visible articular surface areas for each approach were marked using an electrocautery device and subsequently analyzed using image-processing software. The labeled areas of each femoral condyle were statistically compared.
Results: At 30° of flexion, visualization of the posterior portions of the lateral and medial femoral condyles was not possible by lateral and medial parapatellar approaches, as only the anterior 29.4% ± 2.1% of the lateral femoral condyle and 25.6% ± 2.8% of the medial condyle were exposed. Visualization of the lateral femoral condyle was limited by the posterolateral ligamentous structures, hence a posterolateral approach only exposed its central (13.1% ± 1.3%) and posterior (12.4% ± 1.1%) portions. Posterolateral extension by an osteotomy of the lateral femoral epicondyle significantly improved the exposure to 53.4% ± 2.7% and, when combined with a Gerdy's tubercle osteotomy, to 70.9% ± 4.1% (p < 0.001). For the posteromedial approach, an arthrotomy between the anteromedial retinaculum and the superficial medial collateral ligament, and one between the posterior oblique ligament and the medial gastrocnemius tendon, allowed visualization of the central (13.5% ± 2.2%) and the posterior (14.6% ± 2.3%) portions of the medial femoral condyle, while a medial femoral epicondyle osteotomy significantly improved visualization to 66.1% ± 5.5% (p < 0.001).
Conclusions: Visualization of the posterior portions of the femoral condyles is limited by the specific anatomy of each surgical corridor. Extension by osteotomy of the femoral epicondyles and Gerdy's tubercle significantly improved articular surface exposure of the femoral condyles.
Clinical relevance: Knowledge of the surgical approach-specific visualization of the articular surface of the femoral condyles might be helpful to properly reduce small Hoffa fragments.
Copyright © 2024 by The Journal of Bone and Joint Surgery, Incorporated.