Thousands of eukaryotic protein-coding genes can be alternatively spliced to yield linear mRNAs and circular RNAs (circRNAs). Some circRNAs accumulate to higher levels than their cognate linear mRNAs, but the vast majority are expressed at low levels. Hence, for most circRNAs, only a handful of sequencing reads, if any, that span the backsplicing junction are observed in standard RNA-seq libraries. It thus has become common to use the 3'-5' exonuclease ribonuclease R (RNase R) to selectively degrade linear RNAs when aiming to prove transcript circularity or biochemically enrich circRNAs. However, RNase R fails to degrade linear RNAs with structured 3' ends or internal G-quadruplex structures. To overcome these shortcomings, we describe an improved protocol for circRNA purification from total RNA that employs a poly(A) tailing step prior to RNase R digestion, which is performed in a Li+ containing buffer (rather than K+) to destabilize G-quadruplexes. This biochemical method enables higher enrichment (two- to threefold) of circRNAs to be obtained compared to standard RNase R protocols due to more efficient removal of linear RNAs. By then performing quantitative RT-PCR (RT-qPCR) or generating RNA-seq libraries, the expression of individual circRNAs can be examined or the entire set of expressed circRNAs defined using established annotation algorithms. We describe step-by-step methods for annotating circRNAs using the CIRI2 and CIRCexplorer2 algorithms. In total, this overall approach can be used to enrich for circRNAs from any total RNA sample, thereby enabling one to quickly identify and validate circRNAs of interest for functional studies.
Keywords: Backsplicing; CIRCexplorer2; CIRI2; CiRNA; CircRNA; G-quadruplex; Poly(A) polymerase; RNA-seq; RT-qPCR; Ribonuclease R.
© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.