The view on nuclear filaments formed by non-skeletal β-actin has significantly changed over the decades. Initially, filamentous actin was observed in amphibian oocyte nuclei and only under specific cell stress conditions in mammalian cell nuclei. Improved labeling and imaging technologies have permitted insights into a transient but microscopically apparent filament network that is relevant for chromatin organization, biomechanics of the mammalian cell nucleus, gene expression, and DNA damage repair. Here, we will provide a historical perspective on the developing insight into nuclear actin filaments.
Keywords: Biomechanics of cell nucleus; DNA damage repair; nuclear actin filaments; nucleocytoplasmic shuttling; signaling and gene expression.