Asphyxial cardiac arrest (ACA) survivors face lasting neurological disability from hypoxic ischemic brain injury. Sex differences in long-term outcomes after cardiac arrest (CA) are grossly understudied and underreported. We used rigorous targeted temperature management (TTM) to understand its influence on survival and lasting sex-specific neurological and neuropathological outcomes in a rodent ACA model. Adult male and female rats underwent either sham or 5-minute no-flow ACA with 18 hours TTM at either ∼37°C (normothermia) or ∼36°C (mild hypothermia). Survival, temperature, and body weight (BW) were recorded over the 14-day study duration. All rats underwent neurological deficit score (NDS) assessment on days 1-3 and day 14. Hippocampal pathology was assessed for cell death, degenerating neurons, and microglia on day 14. Although ACA females were less likely to achieve return of spontaneous circulation (ROSC), post-ROSC physiology and biochemical profiles were similar between sexes. ACA females had significantly greater 14-day survival, NDS, and BW recovery than ACA males at normothermia (56% vs. 29%). TTM at 36°C versus 37°C improved 14-day survival in males, producing similar survival in male (63%) versus female (50%). There were no sex or temperature effects on CA1 histopathology. We conclude that at normothermic conditions, sex differences favoring females were observed after ACA in survival, NDS, and BW recovery. We achieved a clinically relevant ACA model using TTM at 36°C to improve long-term survival. This model can be used to more fully characterize sex differences in long-term outcomes and test novel acute and chronic therapies.
Keywords: asphyxial cardiac arrest; brain; mild hypothermia; neurologic function; sex differences.