Objective: This study was to investigate the underlying mechanism by which Saikosaponin D (SSD) mitigates the inflammatory response associated with osteoarthritis (OA) and regulates autophagy through upregulation of microRNA (miR)-199-3p and downregulation of transcription Factor-4 (TCF4).
Methods: A mouse OA model was established. Mice were intragastrically administered with SSD (0, 5, 10 μmol/L) or injected with miR-199-3p antagomir into the knee. Then, pathological changes in cartilage tissues were observed. Normal chondrocytes and OA chondrocytes were isolated and identified. Chondrocytes were treated with SSD and/or transfected with oligonucleotides or plasmid vectors targeting miR-199-3p and TCF4. Cell viability, apoptosis, inflammation, and autophagy were assessed. miR-199-3p and TCF4 expressions were measured, and their targeting relationship was analyzed.
Results: In in vivo experiments, SSD ameliorated cartilage histopathological damage, decreased inflammatory factor content and promoted autophagy in OA mice. miR-199-3p expression was downregulated and TCF4 expression was upregulated in cartilage tissues of OA mice. miR-199-3p expression was upregulated and TCF4 expression was downregulated after SSD treatment. Downregulation of miR-199-3p attenuated the effect of SSD on OA mice. In in vitro experiments, SSD inhibited the inflammatory response and promoted autophagy in OA chondrocytes. Downregulation of miR-199-3p attenuated the effect of SSD on OA chondrocytes. In addition, upregulation of miR-199-3p alone inhibited inflammatory responses and promoted autophagy in OA chondrocytes. miR-199-3p targeted TCF4. Upregulation of TCF4 attenuated the effects of miR-199-3p upregulation on OA chondrocytes.
Conclusions: SSD alleviates inflammatory response and mediates autophagy in OA via elevating miR-199-3p to target TCF4.
Keywords: Autophagy; MicroRNA-42; Osteoarthritis; Saikosaponin D; Transcription Factor-4.
© 2024. The Author(s).