A 3D bioprinted neurovascular unit (NVU) model is developed to study glioblastoma (GBM) tumor growth in a brain-like microenvironment. The NVU model includes human primary astrocytes, pericytes and brain microvascular endothelial cells, and patient-derived glioblastoma cells (JHH-520) are used for this study. Fluorescence reporters are used with confocal high content imaging to quantitate real-time microvascular network formation and tumor growth. Extensive validation of the NVU-GBM model includes immunostaining for brain relevant cellular markers and extracellular matrix components; single cell RNA sequencing (scRNAseq) to establish physiologically relevant transcriptomics changes; and secretion of NVU and GBM-relevant cytokines. The scRNAseq reveals changes in gene expression and cytokines secretion associated with wound healing/angiogenesis, including the appearance of an endothelial mesenchymal transition cell population. The NVU-GBM model is used to test 18 chemotherapeutics and anti-cancer drugs to assess the pharmacological relevance of the model and robustness for high throughput screening.
Keywords: 3D Bioprinting; glioblastomas; high‐throughput screening; neurovascular unit; transcriptomics.
Published 2024. This article is a U.S. Government work and is in the public domain in the USA. Advanced Healthcare Materials published by Wiley‐VCH GmbH.