The cross section of the ^{13}C(α,n)^{16}O reaction is needed for nuclear astrophysics and applications to a precision of 10% or better, yet inconsistencies among 50 years of experimental studies currently lead to an uncertainty of ≈15%. Using a state-of-the-art neutron detection array, we have performed a high resolution differential cross section study covering a broad energy range. These measurements result in a dramatic improvement in the extrapolation of the cross section to stellar energies potentially reducing the uncertainty to ≈5% and resolving long standing discrepancies in higher energy data.