The square-lattice Hubbard and closely related t-J models are considered as basic paradigms for understanding strong correlation effects and unconventional superconductivity (SC). Recent large-scale density matrix renormalization group simulations on the extended t-J model have identified d-wave SC on the electron-doped side (with the next-nearest-neighbor hopping t_{2}>0) but a dominant charge density wave (CDW) order on the hole-doped side (t_{2}<0), which is inconsistent with the SC of hole-doped cuprate compounds. We re-examine the ground-state phase diagram of the extended t-J model by employing the state-of-the-art density matrix renormalization group calculations with much enhanced bond dimensions, allowing more accurate determination of the ground state. On six-leg cylinders, while different CDW phases are identified on the hole-doped side for the doping range δ=1/16-1/8, a SC phase emerges at a lower doping regime, with algebraically decaying pairing correlations and d-wave symmetry. On the wider eight-leg systems, the d-wave SC also emerges on the hole-doped side at the optimal 1/8 doping, demonstrating the winning of SC over CDW by increasing the system width. Our results not only suggest a new path to SC in general t-J model through weakening the competing charge orders, but also provide a unified understanding on the SC of both hole- and electron-doped cuprate superconductors.