Metabolic-dysfunction-associated steatotic liver disease (MASLD) is becoming a leading cause of end-stage liver disease globally. Metabolic-dysfunction-associated steatohepatitis (MASH) represents a progressive inflammatory manifestation of MASLD. MASH underlies a versatile and dynamic inflammatory microenvironment, accompanied by aberrant metabolism and ongoing liver regeneration, establishing itself as a significant risk factor for hepatocellular carcinoma (HCC). The mechanisms underlying the escape and survival of malignant cells within the extensive inflammatory microenvironment of MASH remain elusive. Regulatory T cells (Tregs) play a crucial role in maintaining homeostasis and preventing excessive immune responses in the liver. Paradoxically, Tregs have been implicated in inhibiting tumour-promoting inflammation and facilitating the evasion of cancer cells. Recent studies have unveiled distinct behaviours of Tregs at different stages of MASLD, suggesting a dual role in the pathogenesis. In this review, we explore the fate of Tregs from MASLD to HCC, offering recent insights into potential targets for clinical intervention.
Keywords: Hepatocellular carcinoma; Immunotherapy; Metabolic-dysfunction-associated steatohepatitis; Metabolic-dysfunction-associated steatotic liver disease; Regulatory T cell.
Copyright © 2024. Published by Elsevier B.V.