Background: As a homologous counterpart to the prokaryotic oligonuclease found in the cellular cytoplasm and mitochondrion, REXO2 assumes a pivotal role in the maintenance of mitochondrial homeostasis. Nevertheless, the precise functions and mechanisms by which REXO2 operates within the context of hepatocellular carcinoma (HCC) have hitherto remained unexamined.
Methods: The expression levels of REXO2 in HCC tissues were evaluated through the utilization of the immunohistochemical (IHC) method, and subsequently, the association between REXO2 expression and the clinicopathological characteristics of HCC patients was scrutinized employing the χ2 test. A battery of experimental assays, encompassing CCK8 viability assessment, cell colony formation, wound healing, and transwell assays, were conducted with the aim of elucidating the biological role of REXO2 within HCC cells. Complementary bioinformatics analyses were undertaken to discern potential correlations between REXO2 and immune infiltration in tumor tissues.
Results: Our IHC findings have unveiled a notable up-regulation of REXO2 within HCC tissues, and this heightened expression bears the status of an independent prognostic factor, portending an adverse outcome for HCC patients (P < 0.05). Upon the attenuation of REXO2 expression, a discernible reduction in the rates of proliferation, invasion and migration of HCC cells ensued (P < 0.05). Furthermore, transcriptome sequencing analysis has provided insights into the putative influence of REXO2 on the development of HCC through the modulation of TNF and NF-κB signaling pathways. Additionally, our bioinformatics analyses have demonstrated a positive correlation between REXO2 and tumor immune cell infiltration, as well as immune checkpoint CTLA-4.
Conclusions: In summation, our results posit an association between the up-regulation of REXO2 and adverse prognostic outcomes, alongside the involvement of immune-related signaling pathways and tumor immune infiltration within the realm of HCC.
Keywords: Hepatocellular carcinoma; Immune infiltration; NF-κB; REXO2; TNF.
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.