Urban trees are at risk of stress due to heat island effects and the increased proportion of impervious areas surrounding them. Among pests of trees, insect borers such as bark beetles (Coleoptera: Curculionidae) and flatheaded borers (Coleoptera: Buprestidae) are some of the most devastating, frequently colonizing stressed trees. The objective of this study was to explore the effects of biotic and abiotic risk factors on borer attacks on trees in urban areas. In the summer of 2021 and 2022, this study was conducted in 50 urban sites in Atlanta and Augusta, Georgia (USA). Specific factors explored include overall tree health, differentially warmer maximum and minimum temperatures of sites compared to surrounding areas, tree species, and the percentage of impervious surface surrounding trees. Generalized linear models and zero-inflated models explored how these factors were related to damage from these borers. The number of borer attacks on trees increased with higher percentage impervious area. As the two most commonly encountered trees, Acer rubrum was found to be significantly more susceptible to attack from borers than Ulmus parvifolia. Unhealthy trees were more likely to experience more frequent and more severe borer attack. Trees with increased impervious cover around them as well as those with differentially warmer daily maximum and minimum temperatures relative to surrounding were more likely to be attacked.
Copyright: © 2024 Williamson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.