Spinal fusion is a common method by which surgeons decrease instability and deformity of the spinal segment targeted. Pedicle screws are vital tools in fusion surgeries and advancements in technology have introduced several modalities of screw placement. Our objective was to evaluate the accuracy of pedicle screw placement in robot-assisted (RA) versus fluoroscopic-guided (FG) techniques. The PubMed and Cochrane Library databases were systematically reviewed from January 2007 through to August 8, 2022, to identify relevant studies. The accuracy of pedicle screw placement was determined using the Gertzbein-Robbins (GR) classification system. Facet joint violation (FJV), total case radiation dosage, total case radiation time, total operating room (OR) time, and total case blood loss were collected. Twenty-one articles fulfilled the inclusion criteria. Successful screw accuracy (GR Grade A or B) was found to be 1.02 (95% confidence interval: 1.01 - 1.04) times more likely with the RA technique. In defining accuracy solely based on the GR Grade A criteria, screws placed with RA were 1.10 (95% confidence interval: 1.06 - 1.15) times more likely to be accurate. There was no significant difference between the two techniques with respect to blood loss (Hedges' g: 1.16, 95% confidence interval: -0.75 to 3.06) or case radiation time (Hedges' g: -0.34, 95% CI: -1.22 to 0.53). FG techniques were associated with shorter operating room times (Hedges' g: -1.03, 95% confidence interval: -1.76 to -0.31), and higher case radiation dosage (Hedges' g: 1.61, 95% confidence interval: 1.11 to 2.10). This review suggests that RA may slightly increase pedicle screw accuracy and decrease per-case radiation dosage compared to FG techniques. However, total operating times for RA cases are greater than those for FG cases.
Keywords: accuracy; fluoroscopy; meta-analysis; pedicle screw; radiation; robotic; robotic assistance; spine surgery.
Copyright © 2024, Jung et al.