Targeting Lewy body dementia with neflamapimod-rasagiline hybrids

Arch Pharm (Weinheim). 2024 Jun;357(6):e2300525. doi: 10.1002/ardp.202300525. Epub 2024 Feb 27.

Abstract

Lewy body dementia (LBD) represents the second most common neurodegenerative dementia but is a quite underexplored therapeutic area. Nepflamapimod (1) is a brain-penetrant selective inhibitor of the alpha isoform of the mitogen-activated serine/threonine protein kinase (MAPK) p38α, recently repurposed for LBD due to its remarkable antineuroinflammatory properties. Neuroprotective propargylamines are another class of molecules with a therapeutical potential against LBD. Herein, we sought to combine the antineuroinflammatory core of 1 and the neuroprotective propargylamine moiety into a single molecule. Particularly, we inserted a propargylamine moiety in position 4 of the 2,6-dichlorophenyl ring of 1, generating neflamapimod-propargylamine hybrids 3 and 4. These hybrids were evaluated using several cell models, aiming to recapitulate the complexity of LBD pathology through different molecular mechanisms. The N-methyl-N-propargyl derivative 4 showed a nanomolar p38α-MAPK inhibitory activity (IC50 = 98.7 nM), which is only 2.6-fold lower compared to that of the parent compound 1, while displaying no hepato- and neurotoxicity up to 25 μM concentration. It also retained a similar immunomodulatory profile against the N9 microglial cell line. Gratifyingly, at 5 μM concentration, 4 demonstrated a neuroprotective effect against dexamethasone-induced reactive oxygen species production in neuronal cells that was higher than that of 1.

Keywords: Lewy body dementia; multitarget‐directed ligands (MTDLs); neflamapimod; p38α‐MAPK; propargylamine.

MeSH terms

  • Animals
  • Dose-Response Relationship, Drug
  • Humans
  • Indans* / chemical synthesis
  • Indans* / chemistry
  • Indans* / pharmacology
  • Lewy Body Disease* / drug therapy
  • Mice
  • Molecular Structure
  • Neuroprotective Agents* / chemical synthesis
  • Neuroprotective Agents* / chemistry
  • Neuroprotective Agents* / pharmacology
  • Structure-Activity Relationship

Substances

  • Neuroprotective Agents
  • Indans
  • rasagiline