Purpose: Assessing the risk of tibial baseplate loosening in patients after unrestricted kinematically aligned (unKA) total knee arthroplasty (TKA) using a medially conforming insert is important because baseplates generally are aligned in varus which has been linked to an increased incidence of aseptic loosening following mechanically aligned TKA. Two limits that indicate long-term stability in patients are a change in maximum total point motion between 1 and 2 years (ΔMTPM) < 0.2 mm and anterior tilt at 2 years < 0.8°. The purposes were to determine: (1) the number of patients with ΔMTPM > 0.2 mm, (2) the number of patients with anterior tilt > 0.8° and (3) whether increased varus baseplate and limb alignment were associated with increased migration.
Methods: Thirty-five patients underwent cemented, caliper-verified, unKA TKA using a medially conforming tibial insert with posterior cruciate ligament (PCL) retention. Biplanar radiographs acquired on the day of surgery and at 1.5, 3, 6, 12 and 24 months were processed with model-based radiostereometric analysis (RSA) software to determine migration and the number of patients with migration above the two stability limits. Medial proximal tibial angle (MPTA), hip-knee-ankle angle (HKAA) and posterior slope angle (PSA) were analyzed for an association with migration in six degrees of freedom and in MTPM.
Results: Thirty-two of 35 patients were available for analysis at 2 years. One patient exhibited ΔMTPM > 0.2 mm. The same patient exhibited anterior tilt > 0.8°. Varus rotation (p = 0.048, r ≤ 0.34) and medial translation (p = 0.0273, r ≤ 0.29) increased with increased varus baseplate alignment.
Conclusion: The results indicate low risk of long-term baseplate loosening in patients. Although varus rotation and medial translation increased with increased varus baseplate alignment, the magnitudes of the migrations were minimal and did not increase ΔMTPM and anterior tilt.
Level of evidence: Level II, therapeutic prospective cohort study.
Keywords: aseptic loosening; baseplate stability; maximum total point motion; migration stability limit; varus baseplate alignment.
© 2024 The Authors. Knee Surgery, Sports Traumatology, Arthroscopy published by John Wiley & Sons Ltd on behalf of European Society of Sports Traumatology, Knee Surgery and Arthroscopy.