Problematic alcohol consumption is associated with deficits in decision-making and alterations in prefrontal cortex neural activity likely contribute. We hypothesized that the differences in cognitive control would be evident between male Wistars and a model of genetic risk: alcohol-preferring P rats. Cognitive control is split into proactive and reactive components. Proactive control maintains goal-directed behavior independent of a stimulus, whereas reactive control elicits goal-directed behavior at the time of a stimulus. We hypothesized that Wistars would show proactive control over alcohol seeking whereas P rats would show reactive control over alcohol seeking. Neural activity was recorded from the prefrontal cortex during an alcohol seeking task with two session types. On congruent sessions, the conditioned stimulus (CS+) was on the same side as alcohol access. Incongruent sessions presented alcohol opposite the CS+. Wistars, but not P rats, made more incorrect approaches during incongruent sessions, suggesting that Wistars utilized the previously learned rule. This motivated the hypothesis that neural activity reflecting proactive control would be observable in Wistars but not P rats. While P rats showed differences in neural activity at times of alcohol access, Wistars showed differences prior to approaching the sipper. These results support our hypothesis that Wistars are more likely to engage in proactive cognitive control strategies whereas P rats are more likely to engage in reactive cognitive control strategies. Although P rats were bred to prefer alcohol, the differences in cognitive control may reflect a sequela of behaviors that mirror those in humans at risk for an AUD.
Keywords: alcohol; cognitive control proactive reactive; in vivo extracellular electrophysiology; motivated behavior; prefrontal cortex; selected line P rat.
Copyright © 2024 Morningstar et al.