P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) often leads to the failure of antitumor chemotherapy, and codelivery of chemodrug with P-gp siRNA (siP-gp) represents a promising approach for treating chemoresistant tumors. To maximize the antitumor efficacy, it is desired that the chemodrug be latently released upon completion of siP-gp-mediated gene silencing, which however, largely remains an unmet demand. Herein, core-shell nanocomplexes (NCs) are developed to overcome MDR via staged liberation of siP-gp and chemodrug (doxorubicin, Dox) in hierarchical response to reactive oxygen species (ROS) concentration gradients. The NCs are constructed from mesoporous silica nanoparticles (MSNs) surface-decorated with cRGD-modified, PEGylated, ditellurium-crosslinked polyethylenimine (RPPT), wherein thioketal-linked dimeric doxorubicin (TK-Dox2) and photosensitizer are coencapsulated inside MSNs while siP-gp is embedded in the RPPT polymeric layer. RPPT with ultrahigh ROS-sensitivity can be efficiently degraded by the low-concentration ROS inside cancer cells to trigger siP-gp release. Upon siP-gp-mediated gene silencing and MDR reversal, light irradiation is performed to generate high-concentration, lethal amount of ROS, which cleaves thioketal with low ROS-sensitivity to liberate the monomeric Dox. Such a latent release profile greatly enhances Dox accumulation in Dox-resistant cancer cells (MCF-7/ADR) in vitro and in vivo, which cooperates with the generated ROS to efficiently eradicate MCF-7/ADR xenograft tumors.
Keywords: ROS responsiveness; dimeric prodrug; multidrug resistance; photodynamic therapy; programmed delivery; siRNA delivery.
© 2024 Wiley‐VCH GmbH.