Proton magnetic resonance spectroscopy (1H-MRS) is the only non-invasive technique to quantify neurometabolic compounds in the living brain. We used 1H-MRS to evaluate the brain metabolites in a rat model of Sepsis-associated encephalopathy (SAE) established by cecal ligation and puncture (CLP). 36 male Sprague-Dawley rats were randomly divided into sham and CLP groups. Each group was further divided into three subgroups: subgroup O, subgroup M, and subgroup N. Neurological function assessments were performed on the animals in the subgroup O and subgroup N at 24 h, 48 h, and 72 h. The animals in the subgroup M were examined by magnetic resonance imaging (MRI) at 12 h after CLP. Compared with the sham group, the ratio of N-acetylaspartate (NAA) to creatine (Cr) in the hippocampus was significantly lower in the CLP group. The respective ratios of lactate (Lac), myo-inositol (mIns), glutamate and glutamine (Glx), lipid (Lip), and choline (Cho) to Cr in the CLP group were clearly higher than those in the sham group. Cytochrome c, intimately related to oxidative stress, was elevated in the CLP group. Neurofilament light (NfL) chain and glial fibrillary acidic protein (GFAP) scores in the CLP group were significantly higher than those in the sham group, while zonula occludens-1 (ZO-1) was downregulated. Compared with the sham group, the CLP group displayed higher values of oxygen extraction fraction (OEF), central venous-arterial partial pressure of carbon dioxide (P (cv-a) CO2), and central venous lactate (VLac). In contrast, jugular venous oxygen saturation (SjvO2) declined. In the present study, 1H-MRS could be used to quantitatively assess brain injury in terms of microcirculation disorder, oxidative stress, blood-brain barrier disruption, and glial cell activation through changes in metabolites within brain tissue.
Keywords: 1H-MRS; Brain injury; Cecal ligation and puncture; Neurological deficit; Sepsis.
© 2024 The Authors. Published by Elsevier Ltd.