Background: Although evidence indicates that extracorporeal shockwave therapy (ESWT) is effective in treating calcifying shoulder tendinitis, incomplete resorption and dissatisfactory results are still reported in many cases. Data mining techniques have been applied in health care in the past decade to predict outcomes of disease and treatment.
Purpose: To identify the ideal data mining technique for the prediction of ESWT-induced shoulder calcification resorption and the most accurate algorithm for use in the clinical setting.
Study design: Case-control study.
Methods: Patients with painful calcified shoulder tendinitis treated by ESWT were enrolled. Seven clinical factors related to shoulder calcification were adopted as the input attributes: sex, age, side affected, symptom duration, pretreatment Constant-Murley score, and calcification size and type. The 5 data mining techniques assessed were multilayer perceptron (neural network), naïve Bayes, sequential minimal optimization, logistic regression, and the J48 decision tree classifier.
Results: A total of 248 patients with calcified shoulder tendinitis were enrolled in this study. Shorter symptom duration yielded the highest gain ratio (0.374), followed by smaller calcification size (0.336) and calcification type (0.253). With the J48 decision tree method, the accuracy of 3 input attributes was 89.5% by 10-fold cross-validation, indicating satisfactory accuracy. A treatment algorithm using the J48 decision tree indicated that a symptom duration of ≤10 months was the most positive indicator of calcification resorption, followed by a calcification size of ≤10.82 mm.
Conclusion: The J48 decision tree method demonstrated the highest precision and accuracy in the prediction of shoulder calcification resorption by ESWT. A symptom duration of ≤10 months or calcification size of ≤10.82 mm represented the clinical scenarios most likely to show resorption after ESWT.
Keywords: J48 decision tree; calcific tendinitis; data mining; extracorporeal shockwave therapy; shoulder.
© The Author(s) 2024.