Biologging and habitat modelling are key tools supporting the development of conservation measures and mitigating the effects of anthropogenic pressures on marine species. Here, we analysed satellite telemetry data and foraging habitat preferences in relation to chlorophyll-a productivity fronts to understand the movements and behaviour of endangered Mediterranean fin whales (Balaenoptera physalus) during their spring-summer feeding aggregation in the North-Western Mediterranean Sea. Eleven individuals were equipped with Argos satellite transmitters across 3 years, with transmissions averaging 23.5 ± 11.3 days. Hidden Markov Models were used to identify foraging behaviour, revealing how individuals showed consistency in their use of seasonal core feeding grounds; this was supported by the distribution of potential foraging habitat. Importantly, tracked whales spent most of their time in areas with no explicit protected status within the study region. This highlights the need for enhanced time- and place-based conservation actions to mitigate the effects of anthropogenic impacts for this species, notably ship strike risk and noise disturbance in an area of exceptionally high maritime traffic levels. These findings strengthen the need to further assess critical habitats and Important Marine Mammal Areas that are crucial for focused conservation, management and mitigation efforts.
Keywords: Marine Protected Areas; Particularly Sensitive Sea Area; cetacean; environmental predictors; foraging; satellite telemetry.
© 2024 The Authors.