Bone is a naturally occurring composite material composed of a stiff mineral phase and a compliant organic matrix of collagen and non-collagenous proteins (NCP). While diverse mineral morphologies such as platelets and grains have been documented, the precise role of individual constituents, and their morphology, remains poorly understood. To understand the role of constituent morphology on the fracture behaviour of lamellar bone, a damage based representative volume element (RVE) was developed, which considered various mineral morphologies and mineralised collagen fibril (MCF) configurations. This model framework incorporated a novel phase-field damage model to predict the onset and evolution of damage at mineral-mineral and mineral-MCF interfaces. It was found that platelet-based mineral morphologies had superior mechanical performance over their granular counterparts, owing to their higher load-bearing capacity, resulting from a higher aspect ratio. It was also found that MCFs had a remarkable capacity for energy dissipation under axial loading, with these fibrillar structures acting as barriers to crack propagation, thereby enhancing overall elongation and toughness. Interestingly, the presence of extrafibrillar platelet-based minerals also provided an additional toughening through a similar mechanism, whereby these structures also inhibited crack propagation. These findings demonstrate that the two primary constituent materials of lamellar bone play a key role in its toughening behaviour, with combined effect by both mineral and MCFs to inhibit crack propagation at this scale. These results have provided novel insight into the fracture behaviour of lamellar bone, enhancing our understanding of microstructure-property relationships at the sub-tissue level.
Keywords: Finite element homogenisation; Hydroxyapatite minerals; Lamellar bone; Mineralised collagen fibril; Phase field modelling of fracture.
Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.