Genetic correlations and causal relationships between cardio-metabolic traits and sepsis

Sci Rep. 2024 Mar 8;14(1):5718. doi: 10.1038/s41598-024-56467-7.

Abstract

Cardio-metabolic traits have been reported to be associated with the development of sepsis. It is, however, unclear whether these co-morbidities reflect causal associations, shared genetic heritability, or are confounded by environmental factors. We performed three analyses to explore the relationships between cardio-metabolic traits and sepsis. Mendelian randomization (MR) study to evaluate the causal effects of multiple cardio-metabolic traits on sepsis. Global genetic correlation analysis to explore the correlations between cardio-metabolic traits and sepsis. Local genetic correlation (GC) analysis to explore shared genetic heritability between cardio-metabolic traits and sepsis. Some loci were further examined for related genes responsible for the causal relationships. Genetic associations were obtained from the UK Biobank data or published large-scale genome-wide association studies with sample sizes between 200,000 to 750,000. In MR, we found causality between BMI and sepsis (OR: 1.53 [1.4-1.67]; p < 0.001). Body mass index (BMI), which is confirmed by sensitivity analyses and multivariable MR adjusting for confounding factors. Global GC analysis showed a significant correlation between BMI and sepsis (rg = 0.55, p < 0.001). More cardio-metabolic traits were identified to be correlated to the sepsis onset such as CRP (rg = 0.37, p = 0.035), type 2 diabetes (rg = 0.33, p < 0.001), HDL (rg = - 0.41, p < 0.001), and coronary artery disease (rg = 0.43, p < 0.001). Local GC revealed some shared genetic loci responsible for the causality. The top locus 1126 was located at chromosome 7 and comprised genes HIBADH, JAZF1, and CREB5. The present study provides evidence for an independent causal effect of BMI on sepsis. Further detailed analysis of the shared genetic heritability between cardio-metabolic traits and sepsis provides the opportunity to improve the preventive strategies for sepsis.

MeSH terms

  • Causality
  • Diabetes Mellitus, Type 2* / genetics
  • Genome-Wide Association Study
  • Humans
  • Mendelian Randomization Analysis
  • Phenotype
  • Sepsis* / genetics