Introduction: Previous studies reported leucocyte telomere length (LTL) and frailty were associated with mortality, but it remains unclear whether frailty serves as a mediator in the relationship between leucocyte telomere length and mortality risk. This study aimed to evaluate how measuring LTL and frailty can support early monitoring and prevention of risk of mortality from the prospective of predictive, preventive, and personalized medicine (PPPM/3PM).
Methods: We included 440,551 participants from the UK Biobank between the baseline visit (2006-2010) and November 30, 2022. The time-dependent Cox proportional hazards model was conducted to assess the association between LTL and frailty index with the risk of mortality. Furthermore, we conducted causal mediation analyses to examine the extent to which frailty mediated the association between LTL and mortality.
Results: During a median follow-up of 13.74 years, each SD increase in LTL significantly decreased the risk of all-cause [hazard ratio (HR): 0.94, 95% confidence interval (CI): 0.93-0.95] and CVD-specific mortality (HR: 0.92, 95% CI: 0.90-0.95). The SD increase in FI elevated the risk of all-cause (HR: 1.35, 95% CI: 1.34-1.36), CVD-specific (HR: 1.47, 95% CI: 1.44-1.50), and cancer-specific mortality (HR: 1.22, 95% CI: 1.20-1.24). Frailty mediated approximately 10% of the association between LTL and all-cause and CVD-specific mortality.
Conclusions: Our results indicate that frailty mediates the effect of LTL on all-cause and CVD-specific mortality. There findings might be valuable to predict, prevent, and reduce mortality through primary prevention and healthcare in context of PPPM.
Supplementary information: The online version contains supplementary material available at 10.1007/s13167-024-00355-7.
Keywords: All-cause mortality; Cancer-specific mortality; Cardiovascular-specific mortality; Frailty; Leucocyte telomere length; Predictive preventive personalized medicine (PPPM / 3PM).
© The Author(s), under exclusive licence to European Association for Predictive, Preventive and Personalised Medicine (EPMA) 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.