Expressed subtype of paralogous genes in functionally homologous cells sometimes show differences across species, the reasons for which have not been explained. The present study examined hypophysiotropic gonadotropin-releasing hormone (GnRH) neurons in vertebrates to investigate this mechanism. These neurons express either gnrh1 or gnrh3 paralogs, depending on the species, and apparent switching of the expressed paralogs in them occurred at least four times in vertebrate evolution. First, we found redundant expression of gnrh1 and gnrh3 in a single neuron in piranha and hypothesized that it may represent an ancestral GnRH system. Moreover, the gnrh1/gnrh3 enhancer of piranha induced reporter RFP/GFP co-expression in a single hypophysiotropic GnRH neuron in both zebrafish and medaka, whose GnRH neurons only express either gnrh3 or gnrh1. Thus, we propose that redundant expression of gnrh1/3 of relatively recent common ancestors may be the key to apparent switching of the paralog usage among present-day species.
Keywords: Cellular neuroscience; Evolutionary mechanisms; Evolutionary theories; Ichthyology; Phylogenetics.
© 2024 The Author(s).