Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and has a poor prognosis and a high propensity to metastasize. Lipid metabolism has emerged as a critical regulator of tumor progression and metastasis in other cancer types. Characterization of the lipid metabolic features of TNBC could provide important insights into the drivers of TNBC metastasis. Here, we showed that metastatic TNBC tumors harbor more unsaturated phospholipids, especially long-chain polyunsaturated fatty acids, at the sn-2 position of phosphatidylcholine and phosphatidylethanolamine compared with primary tumors. Metastatic TNBC tumors upregulated ACSL4, a long-chain polyunsaturated acyl-CoA synthetase that drives the preferential incorporation of polyunsaturated fatty acids into phospholipids, resulting in the alteration of membrane phospholipid composition and properties. Moreover, ACSL4-mediated phospholipid remodeling of the cell membrane induced lipid-raft localization and activation of integrin β1 in a CD47-dependent manner, which led to downstream focal adhesion kinase phosphorylation that promoted metastasis. Importantly, pharmacologic inhibition of ACSL4 suppressed tumor growth and metastasis and increased chemosensitivity in TNBC models in vivo. These findings indicate that ACSL4-mediated phospholipid remodeling enables TNBC metastasis and can be inhibited as a potential strategy to improve the efficacy of chemotherapy in TNBC.
Significance: ACSL4 upregulation in triple-negative breast cancer alters cell membrane phospholipid composition to increase integrin β1 activation and drive metastasis, indicating that targeting ACSL4 could potentially block metastasis and improve patient outcomes.
©2024 The Authors; Published by the American Association for Cancer Research.