PIFiA: self-supervised approach for protein functional annotation from single-cell imaging data

Mol Syst Biol. 2024 May;20(5):521-548. doi: 10.1038/s44320-024-00029-6. Epub 2024 Mar 12.

Abstract

Fluorescence microscopy data describe protein localization patterns at single-cell resolution and have the potential to reveal whole-proteome functional information with remarkable precision. Yet, extracting biologically meaningful representations from cell micrographs remains a major challenge. Existing approaches often fail to learn robust and noise-invariant features or rely on supervised labels for accurate annotations. We developed PIFiA (Protein Image-based Functional Annotation), a self-supervised approach for protein functional annotation from single-cell imaging data. We imaged the global yeast ORF-GFP collection and applied PIFiA to generate protein feature profiles from single-cell images of fluorescently tagged proteins. We show that PIFiA outperforms existing approaches for molecular representation learning and describe a range of downstream analysis tasks to explore the information content of the feature profiles. Specifically, we cluster extracted features into a hierarchy of functional organization, study cell population heterogeneity, and develop techniques to distinguish multi-localizing proteins and identify functional modules. Finally, we confirm new PIFiA predictions using a colocalization assay, suggesting previously unappreciated biological roles for several proteins. Paired with a fully interactive website ( https://thecellvision.org/pifia/ ), PIFiA is a resource for the quantitative analysis of protein organization within the cell.

Keywords: Imaging; Machine Learning; Protein; Self-supervised; Single-cell.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Green Fluorescent Proteins / genetics
  • Green Fluorescent Proteins / metabolism
  • Image Processing, Computer-Assisted / methods
  • Microscopy, Fluorescence* / methods
  • Molecular Sequence Annotation
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism
  • Saccharomyces cerevisiae* / genetics
  • Saccharomyces cerevisiae* / metabolism
  • Single-Cell Analysis* / methods

Substances

  • Saccharomyces cerevisiae Proteins
  • Green Fluorescent Proteins