Per- and poly-fluoroalkyl substances (PFAS), such as GenX, are a class of highly stable synthetic compounds that have recently become the focus of environmental remediation endeavors due to their toxicity. While considerable strides have been made in PFAS remediation, the diversity of these compounds, and the costs associated with approaches such as ion exchange resins and advanced oxidation technologies, remain challenging for widespread application. In addition, little is known about the potential binding and impacts of GenX on human proteins. To address these issues, we applied phage display and screened short peptides that bind specifically to GenX, with the ultimate goal of identifying human proteins that bind with GenX. In this study we identified the amino acids that contribute to the binding and measured the binding affinities of the two discovered peptides with NMR. A human protein, ankyrin-repeat-domain-containing protein 36B, with matching sequences of one of the peptides, was identified, and the binding positions were predicted by docking and molecular dynamics simulation. This study created a platform to screen peptides that bind with toxic chemical compounds, which ultimately helped us identify biologically relevant molecules that could be inhibited by the GenX, and also provided information that will contribute to future bioengineered GenX-binding device design.
Keywords: GenX; MD simulation; NMR; PFAS; phage display.